</>>

Computational Cognitive Modeling Project - Train Network

By: Kuncheng Feng, Taeyoung Park, & Johnson Liu

INTRODUCTION

- Commuters traveling from one station to another.
 - Commuter
 - Trains
 - Train stations
 - \circ States of the trains

BACKGROUND

- Graph theory
 - \circ Train station (Nodes)
 - Train routes (Edges)
- Dijkstra's algorithm
 - Shortest Path
 - \circ GPS, Train station
- GPS system
 - Google map
- Time-dependent stochastic shortest path
 - Time-dependent path
 - \circ Stochastic path

APPROACH

- Initially planned on modeling the MTA train network.
- Found several limitations:
 - Too large
 - Too complex
- Decided to construct our own train network.

COGNITIVE MODEL

- The construction of our cognitive model/train network is simple.
- Create train stations using vertices and train paths using edges.
- Make some stations have multiple available trains.
- Design the trains to operate in a circular path and in both directions.
- Establish local and express routes.

BELIEF REVISION

- Revising the shortest path
- State of train:
 - Fast adjust train weight multiplier to 0.5
 - Normal adjust train weight multiplier to 1
 - Slow adjust train weight multiplier to 1.5
 - Broken adjust train weight multiplier to zero
- Train transfers also add weights to path

Demo

We would like to show 2 scenarios in this demonstration:

- Travel from station 1 to station 6
- Travel from station 2 to station 14

Limitations

- Does not support big and complex networks.
 - Exponential growth of knowledge base.
 - Exponential growth of run time.
 - Exceeds stack limit if too many trains.
- Limited Train status.
 - \circ Only 4 states.
 - \circ Lack of flavors in states.
- Unfriendly interface.
 - Not many inputs are accepted.
 - No "exit" command.

potential future improvements

- More flavors in describing the state of the train.
- More flavors in the world.
- Better user interface.
- If "A" then "B" inferences.
- Any pathfinding algorithm than "brute force".

THANKS!

Any comments, questions, or concerns?

CREDITS: This presentation template was created by Slidesgo, incluiding icons by Flaticon, and infographics & images by Freepik.